

WHY CONDUCT AN ENERGY ASSESSMENT?

- An unhappy customer will not recommend you to their friends!
- Doing an energy assessment allows you to explain the limitations of the system to the owner BEFORE they buy!!!

SIDSDOCK

1

3

SELAPI

Monitoring

SELAPI

- It is practical fro large sites like hotels and villages etc.
- Not necessarily practical for a single household.

WHY MANUAL LOAD ASSESSMENT?

- The system is for a new site;
- The site is very remote and it would be too expensive to install and retrieve the monitoring equipment
- Nobody will pay for monitoring.

INFORMATION TO BE OBTAINED BY DESIGNER

SELAPI

3

• List all the electrical appliances that the system owner currently uses and discuss potential future requirements

SIDSDOCK

1

• Investigate all the current and future energy requirements of the owner e.g. water heating, cooking and space heating and cooling

SIDSDOCK

IDENTIFY ENERGY SERVICES

Energy Load	Proposed Energy Source	Additional information
Water heating		
Space cooling		
Refrigeration		
Lighting		
Cooking		
Kitchen appliances, office equipment		
Power tools		
Water pumping		
Water & waste treatment		
???		
SEIAPI		

TYPICAL ENI	ERGY SERVICES AND ENERGY SO	URCE SELECTION		
Energy service	Energy source	Comments		
Water heating	Solar + gas boosting	Most appropriate energy source Minimum environmental impact Lowest cost at remote site		
Space heating	Energy efficient house design, wood heating	Most appropriate energy source		
Space cooling	Energy efficient house design	Lowest cost		
Refrigeration	Electric (d.c.)	d.c. chosen for efficiency reasons Preference for fluorescent lamps. Some incardescent lamps for low use areas		
Lighting	Electric (d.c.)			
Cooking	Gas stove, some electric appliances (e.g. microwave oven)	Only available option Efficiency produces lowest energy requirements Lowest system cost		
Cleaning, entertainment, kitchen appliances, office equipment	Efficient electric	Only available option Efficiency produces lowest energy requirements Lowest system cost Only available option Lowest cost		
Power tools	Electric			
Water pumping	Efficient el ectric			
Water and waste treatment	None			

		Power	Energy	/ Usage	Power	Contribution to Maximum Demand	Surge	Contrib Surge D	ution to Nemand	
Appliance	No	W	Hrs/day	wh/days	Factor	VA	Factor	Potential	Design	Comment
Kitchen Lights	1	20	5	100	0.8					
Lounge Room	1	15	1	15	0.8					
Bedroom 1 Lights	1	15	1	15	0.8					
Bedroom 2 Lights TV	1	15	1	15	0.8					
Stereo										
Computer	1	150	5	750	0.8					
Microwav e	1	1000	0.25	250	0.8					
Fridge	1	150	10	1500	0.8					
Freezer	1	150	8	1200	0.8					
Pressure Pump	1	350	0.5	175	0.7					
Iron	1	1000	0.2	200	1					
Washing Machine	1	200	0.75	150	0.7					
	TOTAL E	NERGY		4370						
MAXIMUM DEMAND										
			DESIGN SL DESIG	IRGE DEM	AND DEMAND					
		SEIAPI			GROUP	-	SI	DSDO	СК	Z

CALCULATING MAXIMUM DEMAND When calculating maximum demand there is not one "right" answer—there can be many combinations of what is on at any one time - that is why determining the maximum demand by load assessment is not easy and hence takes time to practice and learn A wrong answer is when the inverter is undersized and the customer has a blackout.

SIDSDOCK

			Contribution to Maximum		Contribution to Surge		
	Power	Power	Demand	Surge	Demand		
Appliance	w	Factor	VA	Factor	Potential	Design	
Kitchen							
Lights	20	0.8	25	1	25	25	on
Lounge							
Lights	15	0.8	18.75	1	18.75	18.75	on
Bedroom 1							
Lights	15	0.8	18.75	1	18.75	18.75	on
Bedroom 2							
Lights	15	0.8	18.75	1	18.75	18.75	on allowed to be an
TV Storee							Allowed to be on but could be left out
Computer	150	0.8	187.5	2	375	375	On a lot
computer	150	0.0	107.5	-	515	5/5	Only allowing for the Microwave- it and iron
Microwave	1000	0.8	1250	1	1250	1250	are largest—will not allow for Microwave and Iron and washing machine
Fridge	150	0.8	187.5	4	750	750	No control- turns on when required
							Though freezer could be on- have not assume
Freezer	150	0.8	187.5	4	750	187.5	surges as same time as fridge or pumpthat is only allowed for 2 motor surges at once
Pressure Pump	350	0.7	500	6	3000	3000	No control-this could come on any time tap turned on
Iron	1000	1		1			Not to be operated when microwave or washing machine is on.
Washing Machine	200	0.7		4			
MAXIMUM DEMAND 2393.75						Allowing 10% Inverter approx 2.6kVA	
DESIGN SURGE DEMAND					6206.25		
		DESIGN S	URGE DEMAND			5643.75	Surge 5.6kVA
•)	SEIAPI	eg.				DSDO	ck 🧭

UNDERTAKING MANAGEMENT INITIATIVES

Daylight sensors on lighting circuits

- Timers on power and lighting circuits
- Circuits breakers sized to limit the maximum demand from a building
- Certain loads that only operate when the generator is operating
- · Sites where load management could be used;
 - Tourist facilities

SEIAPI

- Communities with fluctuating populations

THREE PHASE LOAD MANAGEMENT

- In general, any system requiring an inverter or generator larger than 15 - 20kW will be a threephase system
- In three phase systems, the system designer will need to ensure that as far as possible the loads are balanced across the 3 phases
- Although unbalanced loads do not cause any damage to a inverter or gen-set, there is the potential for supply capacity to be made unusable

SIDSDOCK

THREE PHASE LOAD MANAGEMENT

- The designer will need to determine all the loads and then list which loads are in each of the three phases
- Care must therefore be taken to ensure that the three phase inverter can meet the peak demand and potential surge demand for each phase

